
ar
X

iv
:1

71
1.

09
99

7v
1 

 [
m

at
h-

ph
] 

 2
7 

N
ov

 2
01

7 QUANTUM KAC’S CHAOS

GEORGE ANDROULAKIS AND RADE MUSULIN

Abstract. We study the notion of quantum Kac’s chaos which was implicitly introduced
by Spohn and explicitly formulated by Gottlieb. We prove the analogue of a result of
Sznitman which gives the equivalence of Kac’s chaos to 2-chaoticity and to convergence of
empirical measures. Finally we give a simple, different proof of a result of Spohn which
states that chaos propagates with respect to certain Hamiltonians that define the evolution
of the mean field limit for interacting quantum systems.

1. The Motivation Behind Kac’s Chaos

The origins of chaos, as discussed in this paper, dates back to Kac. In 1956, Kac [12] was
interested in solving the non-linear integro-differential equation known as the Boltzmann
equation [12, Equation (1.1)]. The solution to the Boltzmann equation is a family (f (N))∞N=1

of probability density functions, where f (N) describes the velocities and positions of N dilute
gas molecules moving in R

3, interacting via elastic binary collisions. The non-linearity of the
Boltzmann equation provided difficulty in obtaining the existence of its solution.

If the gas is restricted to a container of fixed volume, there are no external forces, and
the number N of molecules is assumed to be equidistributed, then f (N) depends on the
velocities of the N gas molecules and time, thus having 3N + 1 real variables. Then the
Boltzmann equation takes a simplified reduced form [12, Equation (1.3)] which is still a non-
linear integro-differential equation. Further assuming that the kinetic energy of the system
remains constant proportional to N , the 3N variables representing velocity lie on a sphere
of radius

√
N in R

3N , and in order to obtain a further simplified version of the Bolzmann
equation, one can replace the 3N real variables by one real variable x. This further reduces
the Boltzmann equation to the reduced Boltzmann equation [12, Equation (3.5)]:

(1)
∂f(x, t)

∂t
=

ν

2π

∫ ∞

−∞

∫ 2π

0

{f(x cos θ+y sin θ, t)f(−x sin θ+y cos θ, t)−f(x, t)f(y, t)}dθdy.
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Kac further introduced a linear differential equation which he called the “Master Equation”

[12, Equation (2.6)]. If φ(N) is a solution to Kac’s “Master Equation”, φ
(N)
1 and φ

(N)
2 will

denote the first and second marginals of φ(N), respectively, i.e.

φ
(N)
1 (x, t) =

∫

x2
2+...+x2

N
=N−x2

φ(N)(x, x2, . . . , xN , t)dσ1(x2, . . . , xN)

and

φ
(N)
2 (x, y, t) =

∫

x2
3+...+x2

N
=N−x2−y2

φ(N)(x, y, x3, . . . , xN , t)dσ2(x2, . . . , xN)

where σ1, σ2 are normalized uniform measures on the spheres of RN−1 and R
N−2 respectively,

centered at the origin and having radii
√
N − x2 and

√

N − x2 − y2 respectively. Kac [12]

noticed that if the pointwise limits lim
N→∞

φ
(N)
1 (x, 0) and lim

N→∞
φ
(N)
2 (x, 0) exist for all x ∈ R,

and

lim
N→∞

φ
(N)
2 (x, y, 0) = lim

N→∞
φ
(N)
1 (x, 0) lim

N→∞
φ
(N)
1 (y, 0),(2)

then the same limits exist at any later time t, and satisfy

lim
N→∞

φ
(N)
2 (x, y, t) = lim

N→∞
φ
(N)
1 (x, t) lim

N→∞
φ
(N)
1 (y, t).(3)

Then equation (3) implies that the function f defined by

f(x, t) := lim
N→∞

φ
(N)
1 (x, t)

satisfies equation (1). Hence Kac proved the existence of the solution to the reduced Boltz-
mann equation for N = 1. Kac [12] referred to the property in equation (3) for a fixed t ≥ 0
as the “Boltzmann property”. Whenever equation (2) implies equation (3) for all times
t > 0, we say that the “Boltzmann property propagates in time”. Hence Kac [12] proved
that the Boltzmann property propagates in time for his “Master Equation”.

Many authors including McKean [13], Johnson [11], Tanaka [19], Ueno [20], Grünbaum
[10], Graham and Méléard [9], Sznitman [18], Mischler [14], Carlen, Carvalho and Loss
[5], Mischler and Mouhot [15] have abstracted the idea of the “Boltzmann property” to a
sequence of probability measures on a topological space. Instead of having the “Boltzmann
property”, the sequence of probability measures nowadays are said to be chaotic. In order
to discuss chaotic sequences of probability measures, these authors first define the notion of
a symmetric probability measure.

Definition 1.1. Let E be a topological space, N be a positive integer, µN be a probability
measure on the Borel subsets of EN . Then µN is called symmetric if for any N-many
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continuous real-valued bounded functions on E, φ1, φ2, ..., φN ,
∫

EN

φ1(x1)φ2(x2) · · ·φN(xN)dµN =

∫

EN

φ1(xπ(1))φ2(xπ(2)) · · ·φn(xπ(N))dµN

for any permutation π of {1, . . . , N}.

A chaotic sequence of probability measures is then defined as follows.

Definition 1.2. Let E be a topological space, µ be a Borel probability measure on E, and
for every N ∈ N let µN be a symmetric Borel probability measure on EN . For k ∈ N, we
say that (µN)

∞
N=1 is k − µ-chaotic if for every choice φ1, φ2, ..., φk of continuous bounded

real-valued functions on E, we have

lim
N→∞

∫

EN

φ1(x1)φ2(x2) · · ·φk(xk)dµN =
k
∏

j=1

∫

E

φj(x)dµ(x).

We say that (µN)
∞
N=1 is µ-chaotic if (µN)

∞
N=1 is k − µ-chaotic for all k ≥ 1.

Boltzmann’s equation and Equation (1) describe evolutions in models of classical me-
chanics. Corresponding quantum mechanical models are described in [16, V. Quantum
Mechanical Models]. In such models, density functions are replaced by density operators,
(positive operators of trace equal to 1), which via the trace duality define states on algebras of
bounded linear operators acting on Hilbert spaces. The corresponding notion to the chaotic
sequences of probability measures, as well as the corresponding notion to the propagation of
chaos appears in [16, Theorem 5.7] where the time evolution is given by a specific family of
Hamiltonians. Gottlieb [8] formulated the notion of chaotic sequences of density operators.
In the current article, we study the notion of chaos which was introduced by Spohn and
formalized by Gottlieb. To honor the fact that the definition of chaos was originated by the
work of Kac for classical models, we refer to its quantum version as “quantum Kac’s chaos”.
We prove two main results in this article. The first result is our Theorem 2.11 which is the
analogue of [18, Proposition 2.2(i)]. The second result of this article is our Theorem 3.5
which is a simpler, different proof of the propagation of chaos result of Spohn [16, Theo-
rem 5.7]. This result shows that chaos propagates in the mean field limit for interacting
quantum systems.

Notation: Throughout this paper, H will denote an arbitrary Hilbert space, B(H) will
denote the set of bounded operators on H, and D(H) will denote the set of density operators
on H. The identity operator on B(H) will be denoted by 1. For any operator A ∈ B(H)
and k ∈ N, A⊗k will denote the tensor product of A with itself k times. In addition, for any
A ∈ B(H), ||A||∞ will denote the B(H) norm of A. If A is a trace class operator on H, then
||A||1 will denote the trace class norm of A.
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For any k,N ∈ N with k ≤ N , and ρN ∈ D(H⊗N), we will denote by ρ
(k)
N ∈ D(H⊗k) the

partial trace of ρN where we trace out all but the first k copies of H. In addition, for an
index set A ⊂ {1, ..., N}, we will denote by trA(ρN ) the partial trace of ρN where we trace

out the copies of H indexed by elements of A. Notice that tr[k+1,N ](ρN) = ρ
(k)
N .

Given a separable metric space E, we will denote by M(E) the set of probability measures
on E. The set of continuous bounded real-valued functions on E will be denoted by Cb(E).
Finally, for N ∈ N, ΣN will denote the set of all permutations of the set {1, 2, ..., N}.

Acknowledgement: The authors would like to thank Eric Carlen for bringing the topic
of quantum Kac’s chaos to our attention.

2. Equivalent Statements of Quantum Kac’s Chaos

Sznitman used probabilistic methods to show existence [17] and uniqueness [18] to the
homogeneous Boltzmann equation. The next result was important in his proofs.

Proposition 2.1. [18, Proposition 2.2] Let E be a separable metric space, (µN)
∞
N=1 a se-

quence of symmetric probability measures on EN , and µ be a probability measure on E. The
following are equivalent:

1. The sequence (µN)
∞
N=1 is µ-chaotic (as in Definition 1.2).

2. The function XN : EN → M(E) defined by XN(x1, ..., xN ) =
1

N

N
∑

i=1

δxi
(where δx

stands for the Dirac measure at x), converges in law with respect to µN to the constant
random variable µ, i.e. for every g ∈ Cb(E) we have that

∫

EN

|(XN − µ)g|2dµN −−−→
N→∞

0.

3. The sequence (µN)
∞
N=1 is 2− µ-chaotic (as in Definition 1.2).

The main result of this section is to obtain a quantum analogue of Proposition 2.1. Instead
of considering probability density functions, we consider density operators. We first have
to extend the definition of symmetric measures (Definition 1.1) to density operators. The
following is the quantum version of symmetry (Definition 1.1) we will use in this paper.

Definition 2.2. Let N ∈ N. A density operator ρN ∈ D(H⊗N ) is symmetric if and only
if for every A1, ..., AN ∈ B(H) and for every permutation π ∈ ΣN ,

tr(A1 ⊗ · · · ⊗ANρN) = tr(Aπ(1) ⊗ · · · ⊗ Aπ(N)ρN ).

This is not the same formulation of the definition of symmetric density operators given
by Gottlieb [8]. To obtain the formulation given by Gottlieb [8], for N ∈ N, define for each
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π ∈ ΣN the unitary operator U
[N ]
π ∈ B(H⊗N) by

U [N ]
π (x1 ⊗ · · · ⊗ xN ) = xπ−1(1) ⊗ · · · ⊗ xπ−1(N).(4)

A density operator ρN ∈ B(H⊗N ) is symmetric according to [8] if and only if U
[N ]
π ρN = ρNU

[N ]
π

for every π ∈ ΣN . However, Gottlieb’s definition of symmetric densities is equivalent to
Definition 2.2 as we show next.

Proposition 2.3. Let N ∈ N and ρN ∈ D(H⊗N). Then ρN is symmetric (as in Defini-

tion 2.2) if and only if U
[N ]
π ρN = ρNU

[N ]
π for all π ∈ ΣN .

Proof. (⇒) Let π ∈ ΣN . Then

tr(A1 ⊗ · · · ⊗ANρN) = tr(Aπ(1) ⊗ · · · ⊗ Aπ(N)ρN ) = tr(U
[N ]

π−1(A1 ⊗ · · · ⊗ AN)U
[N ]
π ρN )

= tr((A1 ⊗ · · · ⊗AN )U
[N ]
π ρNU

[N ]
π−1)

for any A1, ..., AN ∈ B(H⊗N ). Since the set of arbitrary sums of simple tensors of bounded

operators in B(H) is dense in B(H⊗N ), this is equivalent to U
[N ]
π ρNU

[N ]
π−1 = ρN , i.e. U

[N ]
π ρN =

ρNU
[N ]
π .

(⇐) For each π ∈ ΣN ,

tr(A1 ⊗ · · · ⊗ ANρN ) = tr(A1 ⊗ · · · ⊗ ANU
[N ]
π ρNU

[N ]
π−1) = tr(U

[N ]
π−1(A1 ⊗ · · · ⊗ AN)U

[N ]
π ρN )

= tr(Aπ(1) ⊗ · · · ⊗Aπ(N)ρN).

�

Some examples of symmetric density operators are as follows.

Example 2.4. Let ρ ∈ D(H). For any N ∈ N, define ρN := ρ⊗N . It is clear that ρN is
symmetric.

Example 2.5. Let N ∈ N and B1, ..., BN ∈ D(H). Then

ρN :=
1

N !

∑

σ∈ΣN

Bσ(1) ⊗ · · · ⊗ Bσ(N) ∈ D(H⊗N)

is symmetric.

Example 2.6. Let (E,F , P ) be a probability space, N ∈ N, and µN ∈ M(EN ) be symmetric.
Then for any measurable, bounded, and integrable, (in the Bochner integral sense), function
D : E → D(H), the density operator DN ∈ D(H) defined by

DN :=

∫

EN

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωN)dµN(ω1, ω2, ..., ωN)

is symmetric.
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Proof. For each π ∈ ΣN and A1, ..., AN ∈ B(H),

tr(A1 ⊗ · · · ⊗ ANDN) = tr(A1 ⊗ · · · ⊗AN

∫

EN

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωN)dµN)

=

∫

EN

tr(A1D(ω1))tr(A2D(ω2)) · · · tr(AND(ωN))dµN

=

∫

EN

tr(A1D(ωπ−1(1))tr(A2D(ωπ−1(2))) · · · tr(AND(ωπ−1(N)))dµN

=

∫

EN

tr(Aπ(1)D(ω1))tr(Aπ(2)D(ω2)) · · · tr(Aπ(N)D(ωN))dµN

= tr(Aπ(1) ⊗ · · · ⊗ Aπ(N)

∫

EN

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωN)dµN)

= tr(Aπ(1) ⊗ · · · ⊗ Aπ(N)DN).

�

The following is the quantum version of Definition 1.2 that we will use in this paper.

Definition 2.7. Let (ρN)
∞
N=1 be a sequence of symmetric density operators such that ρN ∈

D(H⊗N) for each N ∈ N, ρ ∈ D(H) be a density operator, and k ∈ N. Then (ρN)
∞
N=1 is

k − ρ-chaotic if and only if for all A1, ..., Ak ∈ B(H),

tr(A1 ⊗ · · · ⊗ Ak ⊗ 1⊗(N−k)ρN) −−−→
N→∞

k
∏

j=1

tr(ρAj).

We say that (ρN )
∞
N=1 is ρ-chaotic if and only if (ρN)

∞
N=1 is k − ρ-chaotic for all k ≥ 1.

Next we give many equivalent formulations of this definition. We will use the fact that
the partial trace of a density operator is a density operator.

Proposition 2.8. Let (ρN )
∞
N=1 be a sequence of symmetric density matrices such that ρN ∈

D(H⊗N) for each N ∈ N, ρ ∈ D(H), and k ∈ N. The following are equivalent

(1) (ρN)
∞
N=1 is k − ρ-chaotic,

(2) tr
((

ρ
(k)
N − ρ⊗k

)

A1 ⊗ · · · ⊗ Ak

)

−−−→
N→∞

0 for all A1, ..., Ak ∈ B(H),

(3) tr
((

ρ
(k)
N − ρ⊗k

)

A
)

−−−→
N→∞

0 for all A ∈ B(H⊗k), and

(4) tr|ρ(k)N − ρ⊗k| −−−→
N→∞

0.

Proof. ((1) ⇔ (2)) This is obvious. See Attal [1, Theorem 2.28].
((2) ⇔ (3)) This follows from the fact that the set of sums of simple tensors of bounded
operators in B(H) is dense in B(H⊗N ).
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((3) ⇔ (4)) Wehrl [21, Theorem 3] proved that a sequence, (DN)
∞
N=1 ⊂ D(K), of density

operators on a Hilbert space K converges weakly to a density operator D ∈ D(K) if and only
if it converges in norm, i.e. tr|DN − D| −−−→

N→∞
0. Our result follows by letting K = H

⊗k,

DN = ρ
(k)
N for each N , and D = ρ⊗k. �

Condition (4) in Proposition 2.8 appears in [16, Theorem 5.7]. Gottlieb [8] used this
condition for all k to define that “ρN is ρ-chaotic”. Proposition 2.8 shows that Gottlieb’s
definition agrees with ours. We will now give some examples of chaotic sequences.

Example 2.9. Let ρ ∈ B(H). For each N ∈ N, define ρN := ρ⊗N . Then it is clear that
(ρN)

∞
N=1 is ρ-chaotic.

The following example due to Gottlieb [8, Lemma 1.3.2] gives a way of constructing a
chaotic sequence of density operators from any classically chaotic sequence of probability
measures.

Example 2.10. Let (E,F , P ) be a probability space and (µN)
∞
N=1 be a sequence of symmetric

probability measures which are µ-chaotic for some probability measure µ ∈ M(E). Let D :
E → D(H) be a measurable, bounded, and integrable function, (in the Bochner integral
sense). Define DN :=

∫

EN D(ω1) ⊗ D(ω2) ⊗ · · · ⊗ D(ωN)dµN(ω1, ω2, ..., ωN) and D :=
∫

E
D(ω)dµ. We know from Example 2.6 that DN ∈ D(H⊗N) is a symmetric density operator

for each N ∈ N. Then (DN)
∞
N=1 is D-chaotic.

Proof. For any k ≥ 1 and A1, ..., Ak ∈ B(H),

tr(A1 ⊗ · · · ⊗Ak ⊗ 1⊗(N−k)

∫

D(ω1)⊗ · · · ⊗D(ωN)dµN)

= tr

(
∫

A1D(ω1)⊗ · · · ⊗AkD(ωk)⊗D(ωk+1)⊗ · · · ⊗D(ωN)dµN

)

=

∫

tr(A1D(ω1)) · · · tr(AkD(ωk))dµN

which converges to

∫

tr(A1D(ω1)) · · · tr(AkD(ωk))dµ
⊗k =

k
∏

j=1

tr

(

Aj

∫

D(ω)dµ

)

as N approaches infinity by Definition 1.2. �

Now we are ready to prove the analogous statement to Proposition 2.1 ([18, Proposition
2.2]) for chaotic sequences of density operators.
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Theorem 2.11. Let (ρN )
∞
N=1 be a symmetric sequence of density operators such that ρN ∈

D(H⊗N) for each N ∈ N, and let ρ ∈ D(H). Then the following are equivalent.

(1) (ρN)
∞
N=1 is k − ρ-chaotic for all k ∈ N,

(2) (ρN)
∞
N=1 is 2− ρ-chaotic, and

(3) for each A ∈ B(H),

tr





∣

∣

∣

∣

∣

1

N

N
∑

j=1

1⊗(j−1) ⊗ A⊗ 1⊗(N−j) − tr(Aρ)1⊗N

∣

∣

∣

∣

∣

2

ρN



 −−−→
N→∞

0.

The function A → 1

N

N
∑

j=1

1⊗(j−1) ⊗ A ⊗ 1⊗(N−j) is studied in [7] and is called a quantum

empirical measure. The above theorem and [18, Proposition 2.2] gives more justifications for
the choice of this term.

Proof. ((1) ⇒ (2)) This is obvious.
((2) ⇒ (3)) Let A ∈ B(H). Notice that

tr





∣

∣

∣

∣

∣

1

N

N
∑

j=1

1⊗(j−1) ⊗A⊗ 1⊗(N−j) − tr(Aρ)1⊗N

∣

∣

∣

∣

∣

2

ρN



(5)

= tr((
1

N

N
∑

i=1

1⊗(i−1)⊗A∗⊗1⊗(N−i)−tr(Aρ)1⊗N)(
1

N

N
∑

j=1

1⊗(j−1)⊗A⊗1⊗(N−j)−tr(Aρ)1⊗N)ρN ).

By distributing, we obtain that the last expression is equal to

1

N2
tr(

N
∑

i,j=1

(1⊗(i−1) ⊗ A∗ ⊗ 1⊗(N−i))(1⊗(j−1) ⊗ A⊗ 1⊗(N−j))ρN )(6)

− tr(Aρ)

N
tr(

N
∑

j=1

1⊗(j−1) ⊗A∗ ⊗ 1⊗(N−j)ρN)(7)

− tr(Aρ)

N
tr(

N
∑

j=1

1⊗(j−1) ⊗A⊗ 1⊗(N−j)ρN )(8)

+ |tr(Aρ)|2.(9)

We will obtain that the sum of lines (6), (7), (8), and (9) goes to zero as N approaches
infinity. To evaluate (6), we consider three cases: when i = j, when i < j, and when j < i.
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If i = j, then by symmetry of ρN ,

1

N2

N
∑

j=1

tr(1⊗(j−1) ⊗ |A|2 ⊗ 1⊗(N−j)ρN) =
1

N
tr(|A|2 ⊗ 1⊗(N−1)ρN )

≤ 1

N
|||A|2 ⊗ 1⊗(N−1)||∞||ρN ||1 ≤

|||A|2||∞
N

,

which goes to zero as N approaches infinity. If i < j, then by symmetry of ρN ,

1

N2

∑

i<j

tr (1⊗(i−1) ⊗ A∗ ⊗ 1⊗(j−i−1) ⊗A⊗ 1⊗(N−j)ρN ) =
1

N2

N !

2(N − 2)!
tr(A∗ ⊗ A⊗ 1⊗(N−2)ρN )

=
N − 1

2N
tr(A∗ ⊗A⊗ 1⊗(N−2)ρN )

2−ρ−chaotic−−−−−−−→
N→∞

1

2
tr(Aρ)tr(A∗ρ) =

1

2
|tr(Aρ)|2.

If j < i we obtain exactly the same limit. Thus, we have that line (6) converges to |tr(Aρ)|2
as N approaches infinity.

Using symmetry of ρN and by assumption, we obtain the limit of line (7),

−tr(Aρ)

N
tr (

N
∑

j=1

1⊗(j−1) ⊗ A∗ ⊗ 1⊗(N−j)ρN )

= −tr(Aρ)tr(A∗ ⊗ 1⊗(N−1)ρN ) −−−→
N→∞

−tr(Aρ)tr(A∗ρ) = −|tr(Aρ)|2,

where in the last limit, we used the obvious fact that if ρN is 2 − ρ-chaotic then it is 1− ρ-
chaotic. Similarly, line (8) converges to −|tr(Aρ)|2 as N approaches infinity.

Therefore, the sum of lines (6), (7), (8), and (9) converge to

|tr(Aρ)|2 − |tr(Aρ)|2 − |tr(Aρ)|2 + |tr(Aρ)|2 = 0,

and line (5) converges to 0 as N approaches infinity.
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((3) ⇒ (1)) Let k ∈ N and A1, ..., Ak ∈ B(H). Then
∣

∣

∣

∣

∣

tr
(

A1 ⊗ · · · ⊗ Ak ⊗ 1⊗(N−k)ρN
)

−
k
∏

j=1

tr(ρAj)

∣

∣

∣

∣

∣

≤(10)

∣

∣tr
(

A1 ⊗ · · · ⊗ Ak ⊗ 1⊗(N−k)ρN
)

(11)

− tr

(

k
∏

j=1

1

N

(

Aj ⊗ 1⊗(N−1) + 1⊗ Aj ⊗ 1⊗(N−2) + · · ·+ 1⊗(N−1) ⊗Aj

)

ρN

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

tr

(

k
∏

j=1

1

N

(

Aj ⊗ 1⊗(N−1) + 1⊗ Aj ⊗ 1⊗(N−2) + · · ·+ 1⊗(N−1) ⊗ Aj

)

ρN

)

(12)

−
N
∏

j=1

tr(ρAj)

∣

∣

∣

∣

∣

.

We label the first and second lines after the inequality by (11) and the third and fourth lines
after the inequality by (12). Our goal will be to show that the sum of lines (11) and (12)
goes to 0 as N approaches infinity.

For lines (11), for k ≤ N we define Ek,N to be the set of embedings (i.e. one-to-one maps)

σ : {1, ..., k} → {1, ..., N}. Notice that #Ek,N =
N !

(N − k)!
. Furthermore, for σ ∈ Ek,N and

i ∈ {1, ..., N}, define

Aσ,i :=

{

Aj when σ(j) = i

1 otherwise.

Then, by symmetry of ρN , we can rewrite lines (11) as
∣

∣

∣

∣

∣

∣

tr









(N − k)!

N !

∑

σ∈Ek,N

[Aσ,1 ⊗ Aσ,2 ⊗ · · · ⊗Aσ,N ](13)

− 1

Nk

k
∏

j=1

(

Aj ⊗ 1⊗(N−1) + 1⊗ Aj ⊗ 1⊗(N−2) + · · ·+ 1⊗(N−1) ⊗ Aj

)

)

ρN

)∣

∣

∣

∣

∣

.(14)

In line (14), there are two types of terms: the terms with N − k 1’s in the expanded form
which we call the off-diagonal terms, and all the other terms which we call the diagonal

terms. There are
N !

(N − k)!
off-diagonal terms and Nk − N !

(N − k)!
diagonal terms. Let

M := max
j=1,...,k

||Aj||∞. The off-diagonal terms are exactly the terms of line (13). Thus, the
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addition of line (13) and the off-diagonal terms of line (14) is bounded by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

(N − k)!

N !
− 1

Nk

)

∑

σ∈Ek,N

Aσ,1 ⊗ · · · ⊗Aσ,N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

||ρN ||1 ≤
N !

(N − k)!

(

(N − k)!

N !
− 1

Nk

)

Mk.

Each diagonal term is also bounded by Mk. Thus, the diagonal terms of line (14) are

bounded by
1

Nk

(

Nk − N !

(N − k)!

)

Mk. Hence, we can bound lines (11) and take the limit

as N approaches 0,

N !

(N − k)!

(

(N − k)!

N !
− 1

Nk

)

Mk +
1

Nk

(

Nk − N !

(N − k)!

)

Mk

= Mk

[(

Nk(N − k)!

N !
− 1

)

N !

Nk(N − k)!
+

N !

Nk(N − k)!

(

Nk(N − k)!

N !
− 1

)]

= 2Mk

[

N !

Nk(N − k)!

(

Nk(N − k)!

N !
− 1

)]

= 2Mk

[

1− N !

Nk(N − k)!

]

−−−→
N→∞

0.

So line (11) goes to 0 as N approaches infinity.
For lines (12), we define XN : B(H) → B(H⊗N ) by

XN (A) :=
1

N

N
∑

j=1

1⊗(j−1) ⊗A⊗ 1⊗(N−j).

Then, lines (12) can be rewritten as

∣

∣

∣

∣

∣

tr

[(

k
∏

j=1

XN (Aj)−
k
∏

j=1

tr(ρAj)1

)

ρN

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

l=0

tr

[(

l
∏

j=1

tr(ρAj)
k
∏

j=l+1

XN(Aj)−
l+1
∏

j=1

tr(ρAj)
k
∏

j=l+2

XN (Aj)1
⊗N

)

ρN

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

l=0

tr

[

(

XN(Al+1)− tr(ρAl+1)1
⊗N
)

l
∏

j=1

tr(ρAj)
k
∏

j=l+2

XN (Aj)ρN

]∣

∣

∣

∣

∣

,
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and can be bounded by

k−1
∑

l=0

∣

∣

∣

∣

∣

tr

[

(

XN (Al+1)− tr(ρAl+1)1
⊗N
)

l
∏

j=1

tr(ρAj)

k
∏

j=l+2

XN(Aj)ρN

]∣

∣

∣

∣

∣

≤
k−1
∑

l=0






tr
[

∣

∣XN(Al+1)− tr(ρAl+1)1
⊗N
∣

∣

2
ρN

]1/2

· tr





∣

∣

∣

∣

∣

l
∏

j=1

tr(ρAj)
k
∏

j=l+2

XN(Aj)

∣

∣

∣

∣

∣

2

ρN





1/2





.

By assumption, for each l,

tr
[

∣

∣XN (Al+1)− tr(ρAl+1)1
⊗N
∣

∣

2
ρN

]1/2

−−−→
N→∞

0,

and if M := max
j=1,...,k

||Aj||∞, since ||XN(Aj)||∞ ≤ ||Aj||∞ ≤ M , we have that

tr





∣

∣

∣

∣

∣

l
∏

j=1

tr(ρAj)

k
∏

j=l+2

XN(Aj)

∣

∣

∣

∣

∣

2

ρN



 ≤
l
∏

j=1

|tr(ρAj)|2tr





∣

∣

∣

∣

∣

k
∏

j=l+2

XN(Aj)

∣

∣

∣

∣

∣

2

ρN





≤
l
∏

j=1

|tr(ρAj)|2
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∏

j=l+2

XN(Aj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

∞

||ρN ||1 ≤ M2k

l
∏

j=1

|tr(ρAj)|2

which is bounded independent of N . Hence, lines (12) converges to 0 as N goes to infinity.
Therefore, line (10) converges to 0 as N approaches infinity.

�

3. Propagation of Chaos

Spohn proved that under evolutions governed by certain families of Hamiltonians, chaotic
sequences of density operators propagate in time [16, Theorem 5.7]. In this section, we will
use the ideas of the proofs of Ducomet [6, Theorem 3.1], and Bardos, Golse, Gottlieb, and
Mauser [2, Theorem 3.1] to give a simple, different proof to the result of Spohn. First, we
define propagation of chaos.

Definition 3.1. Let (ρN (0))
∞
N=1 be a sequence of density operators and let (HN)

∞
N=1 be a

sequence of Hamiltonians where ρN (0) ∈ D(H⊗N ) and HN ∈ B(H⊗N ) for every N ∈ N. For
each t ≥ 0 and N ∈ N, define the density operator

ρN (t) := e−itHNρN(0)e
itHN ∈ D(H⊗N).(15)

If, for each fixed t ≥ 0, the sequence (ρN (t))
∞
N=1 is ρ(t)-chaotic for some ρ(t) ∈ D(H), then

we say that chaos propagates with respect to (HN)
∞
N=1.



QUANTUM KAC’S CHAOS 13

We will now construct, as in Spohn [16], examples of propagation of chaos. We will
examine the mean field limit for interacting quantum particles, see [16, pages 609 - 613]. For

each N ∈ N and π ∈ ΣN , define the unitary operator U
[N ]
π ∈ B(H⊗N ) by equation (4). For

A ∈ B(H), V ∈ B(H⊗H), N ∈ N, and j ∈ {1, ..., N}, define

A
[N ]
j := 1⊗(j−1) ⊗ A⊗ 1⊗(N−j−1) ∈ B(H⊗N ),

V
[N ]
12 := V ⊗ 1⊗(N−2),

and

V
[N ]
ij = U

[N ]

π−1V
[N ]
12 U [N ]

π

where π is any permutation where π(i) = 1 and π(j) = 2. Notice that this operator is
well defined and independent of the permutation π that we use, (as long as π(i) = 1 and
π(j) = 2) because when applied to a simple tensor x1 ⊗ · · · ⊗ xN all but the xi and xj spots
are left invariant. For any self-adjoint A ∈ B(H), any self-adjoint V ∈ B(H ⊗ H), and each
N ∈ N, consider the Hamiltonian

HN =
N
∑

j=1

A
[N ]
j +

1

N

N
∑

i 6=j;i,j=1

V
[N ]
ij .(16)

Also, define

Hn,N :=

n
∑

j=1

A
[n]
j +

1

N

n
∑

i 6=j;i,j=1

V
[n]
ij(17)

for each n,N ∈ N, n ≤ N .
The main result of this section is Theorem 3.5. In this theorem, we will assume that a

sequence of density operators (ρN (0))
∞
N=1 is ρ(0)-chaotic and we will show that if (HN)

∞
N=1

is defined by equation (16) and for all t ≥ 0, (ρN (t))
∞
N=1 is defined by equation (15), then

for all t ≥ 0 the sequence (ρN (t))
∞
N=1 is ρ(t)-chaotic for some ρ(t) ∈ D(H), i.e. chaos

propagates with respect to (HN)
∞
N=1. Before proving our main result (Theorem 3.5), we

need to establish some preliminary results. The first preliminary result consists of proving
that ρN (t) is symmetric for each N ∈ N and t ≥ 0.

Proposition 3.2. For each N ∈ N and t ≥ 0, ρN (t) (as defined in equation (15)) is
symmetric.

Proof. Let π ∈ ΣN . By Proposition 2.3, we must show that U
[N ]

π−1e
−itHNρN (0)e

itHNU
[N ]
π =

U
[N ]

π−1ρN(t)U
[N ]
π = ρN(t). Since ρN(0) is symmetric, it is enough to show that U

[N ]

π−1e
itHNU

[N ]
π =

eitHN . Furthermore, it is enough to show that U
[N ]
π−1HNU

[N ]
π = HN .
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First we prove that U
[N ]
π−1

N
∑

j=1

A
[N ]
j U

[N ]
π =

N
∑

j=1

A
[N ]
j . Indeed,

U
[N ]
π−1

N
∑

j=1

A
[N ]
j U [N ]

π (x1 ⊗ · · · ⊗ xN) =

N
∑

j=1

U
[N ]
π−1A

[N ]
j (xπ−1(1) ⊗ · · · ⊗ xπ−1(N))

=
N
∑

j=1

U
[N ]

π−1(xπ−1(1) ⊗ · · · ⊗ xπ−1(j−1) ⊗A(xπ−1(j))⊗ xπ−1(j+1) ⊗ · · · ⊗ xπ−1(N))

=

N
∑

j=1

x1 ⊗ · · · ⊗ xπ−1(j)−1 ⊗A(xπ−1(j))⊗ xπ−1(j)+1 ⊗ · · · ⊗ xN

=
N
∑

j=1

x1 ⊗ · · · ⊗ xj−1 ⊗ Axj ⊗ xj+1 ⊗ · · · ⊗ xN =
N
∑

j=1

A
[N ]
j (x1 ⊗ · · · ⊗ xN ).

Next, will will show that U
[N ]

π−1

N
∑

i 6=j;i,j=1

V
[N ]
ij U

[N ]
π =

N
∑

i 6=j;i,j=1

V
[N ]
ij . For each i, j ∈ {1, ..., N}

with i 6= j, choose σij ∈ ΣN with σij(i) = 1 and σij(j) = 2. Then

U
[N ]
π−1

N
∑

i 6=j;i,j=1

V
[N ]
ij U [N ]

π =

N
∑

i 6=j;i,j=1

U
[N ]
π−1V

[N ]
ij U [N ]

π =

N
∑

i 6=j;i,j=1

U
[N ]
π−1U

[N ]

σ−1
ij

V
[N ]
12 U [N ]

σij
U [N ]
π

=
N
∑

i 6=j;i,j=1

U
[N ]

(σijπ)−1V
[N ]
12 U [N ]

σijπ
.(18)

Notice that (σijπ)(π
−1(i)) = 1 and (σijπ)(π

−1(j)) = 2, and thus, line (18) is equal to

N
∑

i 6=j;i,j=1

V
[N ]

π−1(i)π−1(j) =
N
∑

i 6=j;i,j=1

V
[N ]
ij ,

where the last equality is valid because i 6= j if and only if π−1(i) 6= π−1(j). Thus, we obtain

that U
[N ]

π−1

N
∑

i 6=j=1

V
[N ]
ij U

[N ]
π =

N
∑

i 6=j=1

V
[N ]
ij . Hence, we have that U

[N ]

π−1HNU
[N ]
π = HN , and ρN(t) is

symmetric. �

We are aiming to construct two similar families of differential equations for
(

ρ
(n)
N (t)

)N−1

n=1

and (ρ(t)⊗n)
∞
n=1. The following Proposition gives a family of differential equations which is

satisfied by
(

ρ
(n)
N (t)

)N−1

n=1
.
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Proposition 3.3. Let N ∈ N. For n ∈ N, n ≤ N − 1, and t ≥ 0, we have

i
d

dt
ρ
(n)
N (t) = [Hn,N , ρ

(n)
N (t)] +

N − n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)](19)

where ρN (t) is given by (15) and Hn,N is given by (17).

Proof. We know

i
d

dt
ρN (t) = [HN , ρN (t)] .

Integrating both sides, we obtain

i (ρN (t)− ρN(0)) =

∫ t

0

[HN , ρN(s)] ds.

Now, taking the partial trace of both sides, and using the fact that partial traces and integrals
commute, we obtain

i
(

ρ
(n)
N (t)− ρ

(n)
N (0)

)

=

∫ t

0

tr[n+1,N ] ([HN , ρN(s)]) ds.(20)

We claim that

tr[n+1,N ] ([HN , ρN(s)])

= [Hn,N , ρ
(n)
N (s)] +

N − n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (s)](21)

for each s ∈ [0,∞). In order to prove equation (21), fix s ∈ [0,∞), and by line [1, equation
(2.11)], we need to prove that for every B ∈ B(H⊗n)

tr
(

[HN , ρN (s)]B ⊗ 1⊗(N−n)
)

= tr

([

n
∑

j=1

A
[n]
j +

1

N

n
∑

i 6=j=1

V
[n]
ij , ρ

(n)
N (s)

]

B

)

+
N − n

N

n
∑

j=1

tr
(

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1, j , ρ

(n+1)
N (s)]B

)

.

Let B ∈ B(H⊗n), and we have

tr

([

N
∑

j=1

A
[N ]
j +

1

N

N
∑

i 6=j;i,j=1

V
[N ]
ij , ρN(s)

]

B ⊗ 1⊗(N−n)

)
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= tr

(

N
∑

j=1

A
[N ]
j ρN(s) B ⊗ 1⊗(N−n) +

1

N

N
∑

i 6=j;i,j=1

V
[N ]
ij ρN (s) B ⊗ 1⊗(N−n)

−ρN (s)
N
∑

j=1

A
[N ]
j B ⊗ 1⊗(N−n) − 1

N
ρN(s)

N
∑

i 6=j;i,j=1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

= tr

(

B ⊗ 1⊗(N−n)

N
∑

j=1

A
[N ]
j ρN(s) +

1

N
B ⊗ 1⊗(N−n)

N
∑

i 6=j;i,j=1

V
[N ]
ij ρN(s)

−ρN (s)
N
∑

j=1

A
[N ]
j B ⊗ 1⊗(N−n) − 1

N
ρN(s)

N
∑

i 6=j;i,j=1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

= tr

(

B ⊗ 1⊗(N−n)
N
∑

j=1

A
[N ]
j ρN(s)− ρN(s)

N
∑

j=1

A
[N ]
j B ⊗ 1⊗(N−n)

)

(22)

+tr

(

1

N
B ⊗ 1⊗(N−n)

N
∑

i 6=j;i,j=1

V
[N ]
ij ρN (s)−

1

N
ρN(s)

N
∑

i 6=j;i,j=1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

.(23)

Line (22) can be rewritten as

tr

(

B ⊗ 1⊗(N−n)
n
∑

j=1

A
[N ]
j ρN (s)

)

− tr

(

ρN (s)

n
∑

j=1

A
[N ]
j B ⊗ 1⊗(N−n)

)

(24)

+tr

(

B ⊗ 1⊗(N−n)
N
∑

j=n+1

A
[N ]
j ρN (s)

)

− tr

(

N
∑

j=n+1

A
[N ]
j B ⊗ 1⊗(N−n)ρN(s)

)

.(25)

Notice that B⊗1⊗(N−n)
N
∑

j=n+1

A
[N ]
j =

N
∑

j=n+1

A
[N ]
j B⊗I⊗(N−n), and so line (25) is equal to zero

(even without taking the trace into account). Notice that in line (24), A
[N ]
j = A

[n]
j ⊗ 1⊗(N−n)
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for j ≤ n, thus line (24) can be written as

tr

(

B

n
∑

j=1

A
[n]
j ⊗ 1⊗(N−n)ρN (s)

)

− tr

(

ρN(s)
n
∑

j=1

A
[n]
j B ⊗ 1⊗(N−n)

)

= tr

(

ρ
(n)
N (s)B

n
∑

j=1

A
[n]
j

)

− tr

(

ρ
(n)
N (s)

n
∑

j=1

A
[n]
j B

)

(by [1, equation (2.11)])

= tr

([

n
∑

j=1

A
[n]
j , ρ

(n)
N (s)

]

B

)

.

Line (23) can be rewritten as

tr

(

1

N
B ⊗ 1⊗(N−n)

n
∑

i 6=j;i,j=1

V
[N ]
ij ρN(s)

)

+ tr

(

1

N
B ⊗ 1⊗(N−n)

∑

1≤i≤n<j≤N

V
[N ]
ij ρN(s)

)

+tr

(

1

N
B ⊗ 1⊗(N−n)

∑

1≤j≤n<i≤N

V
[N ]
ij ρN(s)

)

+ tr

(

1

N
B ⊗ 1⊗(N−n)

N
∑

i 6=j;i,j=n+1

V
[N ]
ij ρN (s)

)

−tr

(

1

N
ρN (s)

n
∑

i 6=j;i,j=1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

− tr

(

1

N
ρN (s)

∑

1≤i≤n<j≤N

V
[N ]
ij B ⊗ 1⊗(N−n)

)

−tr

(

1

N
ρN (s)

∑

1≤j≤n<i≤N

V
[N ]
ij B ⊗ 1⊗(N−n)

)

− tr

(

1

N
ρN (s)

N
∑

i 6=j;i,j=n+1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

.

The first and fifth terms of the above expression give

tr

(

1

N
B ⊗ 1⊗(N−n)

n
∑

i 6=j;i,j=1

V
[N ]
ij ρN (s)

)

− tr

(

1

N
ρN(s)

n
∑

i 6=j;i,j=1

V
[N ]
ij B ⊗ 1⊗(N−n)

)

.(26)

The second and sixth terms of the same expression give

tr

(

1

N
B ⊗ 1⊗(N−n)

∑

1≤i≤n<j≤N

V
[N ]
ij ρN (s)

)

− tr

(

1

N
ρN(s)

∑

1≤i≤n<j≤N

V
[N ]
ij B ⊗ 1⊗(N−n)

)

.(27)

The third and seventh terms of the same expression give

tr

(

1

N
B ⊗ 1⊗(N−n)

∑

1≤j≤n<i≤N

V
[N ]
ij ρN (s)

)

− tr

(

1

N
ρN(s)

∑

1≤j≤n<i≤N

V
[N ]
ij B ⊗ 1⊗(N−n)

)

.(28)
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The fourth and eighth terms of the same expression give

tr

(

1

N
B ⊗ 1⊗(N−n)

N
∑

i 6=j;i,j=n+1

V
[N ]
ij ρN (s)

)

− tr

(

1

N

N
∑

i 6=j;i,j=n+1

V
[N ]
ij B ⊗ 1⊗(N−n)ρN (s)

)

.(29)

Notice that B ⊗ I⊗(N−n)
N
∑

i 6=j;i,j=n+1

V
[N ]
ij =

N
∑

i 6=j;i,j=n+1

V
[N ]
ij B ⊗ I⊗(N−n), and so line (29) is

equal to zero (even without taking the trace into account).

Notice that V
[N ]
ij = V

[n]
ij ⊗ 1⊗(N−n) for i, j ≤ n,, thus line (26) can be rewritten as

1

N
tr

(

B

n
∑

i 6=j;i,j=1

V
[n]
ij ⊗ 1⊗(N−n) ρN (s)

)

− 1

N
tr

(

n
∑

i 6=j;i,j=1

V
[n]
ij B ⊗ 1⊗(N−n) ρN (s)

)

=
1

N
tr

(

ρ
(n)
N (s)B

n
∑

i 6=j;i,j=1

V
[n]
ij

)

− 1

N
tr

(

ρ
(n)
N (s)

n
∑

i 6=j;i,j=1

V
[n]
ij B

)

(by [1, equation (2.11)])

= tr

([

1

N

n
∑

i 6=j=1

V
[n]
ij , ρ

(n)
N (s)

]

B

)

.

There are N − n values of j in line (27) and by symmetry of ρN(s) we can replace all of
these values of j by n + 1 and thus we have that line (27) can be rewritten as

N − n

N
tr

(

B ⊗ 1⊗(N−n)

n
∑

i=1

V
[N ]
i n+1ρN(s)

)

− N − n

N
tr

(

n
∑

i=1

V
[N ]
i n+1 B ⊗ 1⊗(N−n) ρN(s)

)

.

Notice that V
[N ]
i n+1 = V

[n+1]
i n+1 ⊗ 1⊗(N−(n+1)) for i ≤ n, thus the last displayed equation is equal

to

N − n

N
tr

((

B ⊗ 1

n
∑

i=1

V
[n+1]
i n+1

)

⊗ 1⊗(N−n−1) ρN (s)

)

−N − n

N
tr

((

n
∑

i=1

V
[n+1]
i n+1 B ⊗ 1

)

⊗ 1⊗(N−n−1) ρN (s)

)

and therefore by [1, equation (2.11)] the last displayed expression is equal to

N − n

N
tr

(

B ⊗ 1

n
∑

i=1

V
[n+1]
i n+1 ρ

(n+1)
N (s)

)

− N − n

N
tr

(

n
∑

i=1

V
(n+1)
i n+1 B ⊗ 1 ρ

(n+1)
N (s)

)

=
N − n

N

n
∑

j=1

tr
(

[V
[n+1]
j n+1 , ρ

(n+1)
N (s)]B ⊗ 1

)

=
N − n

N

n
∑

j=1

tr
(

tr{n+1}[V
[n+1]
j n+1 , ρ

(n+1)
N (s)]B

)

,
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where again we used [1, equation (2.11)] to obtain the last equality.
Similarly, line (28) can be rewritten as

N − n

N

n
∑

j=1

tr
(

tr{n+1}[V
[n+1]
n+1 j , ρ

(n+1)
N (s)]B

)

.

Thus, (20) and (21) lead to

i
(

ρ
(n)
N (t)− ρ

(n)
N (0)

)

=

∫ t

0

(

[Hn,N , ρ
(n)
N (s)] +

N − n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (s)]

)

ds.

We take the derivative of both sides to obtain the result

i
d

dt
ρ
(n)
N (t) = [Hn,N , ρ

(n)
N (t)] +

N − n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)].

�

The next proposition concludes with a family of differential equations which is satisfied by
(ρ(t)⊗n)

∞
n=1. This family of differential equations is similar to the ones displayed in equation

(19).

Proposition 3.4. Let t ≥ 0 and ρ(0) ∈ D(H). If ρ(t) is the solution to the differential
equation

i
d

dt
ρ(t) = [A, ρ(t)] + tr{2}

[

V
[2]
12 + V

[2]
21 , ρ(t)⊗ ρ(t)

]

(30)

(which is called the Hartree Equation), with initial condition ρ(0), then we have that (ρ(t)⊗n)
∞
n=1

satisfies the family of differential equations

i
d

dt
ρ(t)⊗n =

n
∑

j=1

[

A
[n]
j , ρ(t)⊗n

]

+
n
∑

j=1

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ(t)

⊗(n+1)
]

.(31)

Equation (30) has a unique solution, see [4, Theorem 4.1].

Proof. We have

i
d

dt
ρ(t)⊗n =

n
∑

j=1

ρ(t)⊗(j−1) ⊗ i
d

dt
ρ(t)⊗ ρ(t)⊗(n−j) (“product” rule)

=

n
∑

j=1

ρ(t)⊗(j−1) ⊗
(

[A, ρ(t)] + tr{2}

[

V
[2]
12 + V

[2]
21 , ρ(t)⊗ ρ(t)

])

⊗ ρ(t)⊗(n−j)
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by assumption. The last expression splits into the following two parts

n
∑

j=1

ρ(t)⊗(j−1) ⊗ [A, ρ(t)]⊗ ρ(t)⊗(n−j)(32)

+
n
∑

j=1

ρ(t)⊗(j−1) ⊗ tr{2}

[

V
[2]
12 + V

[2]
21 , ρ(t)⊗ ρ(t)

]

⊗ ρ(t)⊗(n−j)(33)

Line (32) can be rewritten as

[A, ρ(t)]⊗ ρ(t)⊗(n−1) + ρ(t)⊗ [A, ρ(t)]⊗ ρ(t)⊗(n−1) + · · ·+ ρ(t)⊗(n−1) ⊗ [A, ρ(t)]

=

n
∑

j=1

[

A
[n]
j , ρ(t)⊗n

]

.(34)

We claim that for j ≤ n,

tr{j+1}

((

V
[n+1]
j j+1 + V

[n+1]
j+1 j

)

ρ(t)⊗(n+1)
)

= tr{n+1}

((

V
[n+1]
j n+1 + V

[n+1]
n+1 j

)

ρ(t)⊗(n+1)
)

.(35)

Indeed, by [1, equation (2.11)], for any B1, ..., Bn ∈ B(H), we have by the symmetry of
ρ(t)⊗(n+1),

tr
(

tr{j+1}

((

V
[n+1]
j j+1 + V

[n+1]
j+1 j

)

ρ(t)⊗(n+1)
)

B1 ⊗ · · · ⊗Bn

)

= tr
((

V
[n+1]
j j+1 + V

[n+1]
j+1 j

)

ρ(t)⊗(n+1)B1 ⊗ · · · ⊗ Bj ⊗ I ⊗ Bj+1 ⊗ · · · ⊗Bn

)

= tr
(

B1 ⊗ · · · ⊗ Bj ⊗ I ⊗ Bj+1 ⊗ · · · ⊗ Bn

(

V
[n+1]
j j+1 + V

[n+1]
j+1 j

)

ρ(t)⊗(n+1)
)

= tr
(

B1 ⊗ · · · ⊗ Bn ⊗ I
(

V
[n+1]
j n+1 + V

[n+1]
n+1 j

)

ρ(t)⊗(n+1)
)

= tr
(

tr{n+1}

((

V
[n+1]
j n+1 + V

[n+1]
n+1 j

)

ρ(t)⊗(n+1)
)

B1 ⊗ · · · ⊗ Bn

)

where for the second to last equality we used the symmetry of ρ(t)⊗(n+1) to move each Bk

(for k ≥ j + 1) to the kth spot and 1 to the n+ 1st spot.
Similar to equation (35), we have that for j ≤ n,

tr{j+1}

(

ρ(t)⊗(n+1)
(

V
[n+1]
j j+1 + V

[n+1]
j+1 j

))

= tr{n+1}

(

ρ(t)⊗(n+1)
(

V
[n+1]
j n+1 + V

[n+1]
n+1 j

))

.(36)
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Line (33) can be rewritten as

n
∑

j=1

ρ(t)⊗(j−1) ⊗ tr{2}

((

V
[2]
12 + V

[2]
21

)

ρ(t)⊗ ρ(t)
)

⊗ ρ(t)⊗(n−j)

−
n
∑

j=1

ρ(t)⊗(j−1) ⊗ tr{2}

(

ρ(t)⊗ ρ(t)
(

V
[2]
12 + V

[2]
21

))

⊗ ρ(t)⊗(n−j)

=
n
∑

j=1

tr{j+1}

((

V
[n+1]
j j+1 + V

[n+1]
j+1 j

)

ρ(t)⊗(n+1) − ρ(t)⊗(n+1)
(

V
[n+1]
j j+1 + V

[n+1]
j+1 j

))

(37)

.
By equations (35) and (36), line (37) is equal to

n
∑

j=1

(

tr{n+1}

((

V
[n+1]
j n+1 + V

[n+1]
n+1 j

)

ρ(t)⊗(n+1)
)

− tr{n+1}

(

ρ(t)⊗(n+1)
(

V
[n+1]
j n+1 + V

[n+1]
n+1 j

)))

=

n
∑

j=1

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ(t)

⊗(n+1)
]

.(38)

Of course (34) and (38) complete the proof. �

The similarity of the two equations (19) and (31) helps to prove the propagation of chaos
presented in the following theorem. The idea of the proof of this theorem comes from
Ducomet [6, Theorem 3.1], and Bardos, Golse, Gottlieb, and Mauser [2, Theorem 3.1].

Theorem 3.5. Let a sequence (ρN (0))
∞
N=1 of density operators be ρ(0)-chaotic where ρ(0) ∈

D(H). Let (HN)
∞
N=1 be a sequence of Hamiltonians defined by equation (16). Then, for

each fixed t ≥ 0, the sequence of density operators (ρN(t))
∞
N=1 defined in equation (15) is

ρ(t)-chaotic where ρ(t) is the solution of the Hartree equation (equation (30)) with initial
condition ρ(0). Thus chaos propagates with respect to the Hamiltonians (HN)

∞
N=1.

Proof. In order to prove Theorem 3.5, we will show the following: Fix t0 ≥ 0. Assume

that (ρN (t0))
∞
N=1 is ρ(t0)-chaotic where ρ(t0) ∈ D(H). Then for t ∈

[

t0, t0 +
1

4||V ||∞

)

,

(ρN(t))
∞
N=1 is ρ(t)-chaotic where ρ(t) ∈ D(H) is the solution to the Hartree equation (equation

(30)) with initial condition ρ(t0).
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For t ∈ [t0,∞), notice that for each n,N ∈ N with n ≤ N − 1, by Proposition 3.3

i
d

dt
ρ
(n)
N (t) = [Hn,N , ρ

(n)
N (t)] +

N − n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)]

=

n
∑

j=1

[

A
[n]
j , ρ

(n)
N (t)

]

+

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)]

+
1

N

n
∑

i 6=j=1

[

V
[n]
i j , ρ

(n)
N (t)

]

− n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)]

= Ln(ρ
(n)
N (t)) +

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)] + ǫn(t, N, ρN(t0))(39)

where Ln(·) :=
n
∑

j=1

[

A
[n]
j , ·

]

and

ǫn(t, N, ρN(t0)) :=
1

N

n
∑

i 6=j=1

[

V
[n]
i j , ρ

(n)
N (t)

]

− n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (t)].

Also, by Proposition 3.4, for each n ∈ N,

i
d

dt
ρ(t)⊗n =

n
∑

j=1

[

A
[n]
j , ρ(t)⊗n

]

+

n
∑

j=1

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ(t)

⊗(n+1)
]

.(40)

Define En,N(t) := ρ
(n)
N (t) − ρ(t)⊗n for each n ≤ N . Then, by subtracting (40) from (39),

we obtain that for each n,N ∈ N with n ≤ N − 1,

i
d

dt
En,N(t) =

n
∑

j=1

[

A
[n]
j , En,N(t)

]

+

n
∑

j=1

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , En+1,N(t)

]

+ ǫn(t, N, ρN(t0)).

Now, define Un,t(·) := eitLn(·) = e
it

n∑

j=1
A

[n]
j

(·)e
−it

n∑

j=1
A

[n]
j

. We claim that Un,t is an isometry
on the trace class operators on H

⊗n for each n ∈ N and t ∈ [0,∞). Indeed, if T ∈ B(H⊗n)
is a trace class operator, then

||Un,t(T )||1 = ||e
it

n∑

j=1
A

[n]
j

Te
−it

n∑

j=1
A

[n]
j ||1 ≤ ||e

it
n∑

j=1
A

[n]
j ||∞||T ||1||e

−it
n∑

j=1
A

[n]
j ||∞ = ||T ||1,

and similarly, by observing that T = e
−it

n∑

j=1
A

[n]
j Un,t(T )e

it
n∑

j=1
A

[n]
j

, we get the reverse inequality.
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Now define Zn,N(t) := Un,t(En,N(t)) for t ∈
[

t0, t0 +
1

4||V ||∞

)

. Then

d

dt
Zn,N(t) = i

n
∑

j=1

A
[n]
j Un,t(En,N(t))− iUn,t(En,N(t))

n
∑

j=1

A
[n]
j

− iUn,t

(

Ln(En,N(t)) +

n
∑

j=1

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , En+1,N(t)

]

+ ǫn(t, N, ρN(t0))

)

= −i

n
∑

j=1

Un,t

(

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , En+1,N(t)

])

− iUn,t (ǫn(t, N, ρN(t0)))(41)

where the last equality follows because Un,t and Ln commute hence

i

n
∑

j=1

A
[n]
j Un,t(En,N(t))− iUn,t(En,N(t))

n
∑

j=1

A
[n]
j − iUn,t(Ln(En,N(t))) = 0.

By integrating both sides of equation (41), we obtain that, for each n,N ∈ N with n ≤
N − 1,

Zn,N(t) = Zn,N(t0)− i

n
∑

j=1

∫ t

t0

Un,s

(

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , En+1,N(s)

])

ds

− i

∫ t

t0

Un,s (ǫn(s,N, ρN(t0))) ds.

We will aim to show that lim
N→∞

||En,N(t)||1 = 0. We have

||En,N(t)||1 = ||Zn,N(t)||1 ≤ ||Zn,N(t0)||1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

∫ t

t0

Un,s

(

tr{n+1}

[

V
[n+1]
j n+1 + V

[n+1]
n+1 j , En+1,N(s)

])

ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

t0

Un,s (ǫn(s,N, ρN(t0)))

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ||En,N(t0)||1 + (t− t0)||ǫn(s,N, ρN(t0))||1 + 4||V ||∞
n
∑

j=1

∫ t

t0

||En+1,N(s)||1 ds.(42)
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We notice that for every n,N ∈ N with n ≤ N − 1 and s ∈ [0,∞),

||ǫn(s,N, ρN(t0))||1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

N

n
∑

i 6=j=1

[

V
[n]
i j , ρ

(n)
N (s)

]

− n

N

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (s)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ 1

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i 6=j;i,j=1

[

V
[n]
i j , ρ

(n)
N (s)

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+
n

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

tr{n+1}[V
[n+1]
j n+1 + V

[n+1]
n+1 j , ρ

(n+1)
N (s)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ n(n− 1)

N
||V ||∞ +

4n2

N
||V ||∞ ≤ 5n2

N
||V ||∞.(43)

Inequalities (42) and (43) give

||En,N(t)||1 ≤ ||En,N(t0)||1 +
5n2

N
||V ||∞(t− t0) + 4||V ||∞

n
∑

j=1

∫ t

t0

||En+1,N(s)||1ds.

Fixing n ∈ N and iterating this inequality m more times for m ∈ N and m ≤ N − n− 1,
we obtain

||En,N(t)||1 ≤ ||En,N(t0)||1 +
5n2

N
||V ||∞(t− t0)(44)

+
m
∑

k=1

(4||V ||∞)k

[

n
∑

j1=1

n+1
∑

j2=1

· · ·
n+k−1
∑

jk=1

(
(t− t0)

k

k!
||En+k,N(0)||1 +

5(n+ k)2

N
||V ||∞

(t− t0)
k+1

(k + 1)!
)

]

+ (4||V ||∞)m+1
n
∑

j1=1

n+1
∑

j2=1

· · ·
n+m
∑

jm+1=1

∫ t

t0

∫ t1

t0

· · ·
∫ tm

t0

||En+m+1,N(tm+1)||1 dtm+1dtm · · · dt1.

Since, for i ≤ j, Ei,j(t) is equal to a difference of two density operators, its trace class
norm is less than or equal to two. Thus the last line of inequality (44) can be bounded above
by

(4||V ||∞)m+1

n
∑

j1=1

n+1
∑

j2=1

· · ·
n+m
∑

jm+1=1

∫ t

t0

∫ t1

t0

· · ·
∫ tm

t0

2dtm+1dtm · · · dt1

= 2(4||V ||∞)m+1n(n + 1) · · · (n+m)
(t− t0)

m+1

(m+ 1)!

= 2
n(n+ 1) · · · (n+m)

(m+ 1)!
(4||V ||∞(t− t0))

m+1 = 2

(

n +m

n− 1

)

(4||V ||∞(t− t0))
m+1

≤ 2

n!
(n +m)n(4||V ||∞(t− t0))

m+1
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where we used that
(

n+m

n− 1

)

=
(n +m)!

(n− 1)!(m+ 1)!
≤ (n+m)n−1

(n− 1)!
=

n(n+m)n−1

n!
≤ (n+m)n

n!
.

Thus, by (44), we obtain

||En,N(t)||1 ≤ ||En,N(t0)||1 +
5n2

N
||V ||∞(t− t0)

+
m
∑

k=1

(4||V ||∞)k

[

n
∑

j1=1

n+1
∑

j2=1

· · ·
n+k−1
∑

jk=1

(
(t− t0)

k

k!
||En+k,N(t0)||1 +

5(n+ k)2

N
||V ||∞

(t− t0)
k+1

(k + 1)!
)

]

+
2

n!
(n+m)n(4||V ||∞(t− t0))

m+1.

Let ǫ > 0. Fix t ∈
[

t0, t0 +
1

4||V ||∞

)

. Choose m such that

2

n!
(n +m)n(4||V ||∞(t− t0))

m+1 <
ǫ

3
.

Then since lim
N→∞

||En,N(t0)||1 = 0 by Proposition 2.8, we can choose N1 ∈ N large enough

such that

||En,N(t0)||1 +
m
∑

k=1

(4||V ||∞)k
n
∑

j1=1

n+1
∑

j2=1

· · ·
n+k−1
∑

jk=1

(t− t0)
k

k!
||En+k,N(t0)||1 <

ǫ

3

for all N ≥ N1.
Then choose N2 ∈ N such that

5n2

N
||V ||∞(t− t0) +

m
∑

k=1

(4||V ||∞)k
n
∑

j1=1

n+1
∑

j2=1

· · ·
n+k−1
∑

jk=1

5(n+ k)2

N
||V ||∞

(t− t0)
k+1

(k + 1)!
<

ǫ

3

for all N ≥ N2. For N ≥ max{N1, N2},

||En,N(t)||1 < ǫ,

i.e. lim
N→∞

||En,N(t)||1 = 0, and ρ
(n)
N (t) is ρ(t)-chaotic for all t ∈

[

t0, t0 +
1

4||V ||∞

)

.

�
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